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The anharmonic oscillator under combined sinusoidal and white noise 
excitation is studied using the Gaussian closure approximation. The mean 
response and the steady-state variance of the system is obtained by the WKBJ 
approximation and also by the Fokker Planck equation. The multiple steady- 
state solutions are obtained and their stability analysis is presented. Numerical 
results are obtained for a particular set of system parameters. The theoretical 
results are compared with a digital simulation study to bring out the usefulness 
of the present approximate theory. 

KEY WORDS: Nonlinear equation; stochastic process; stability; steady-state; 
Gaussian closure. 

1. I N T R O D U C T I O N  

Duffing's equa t ion  (also called the a n h a r m o n i c  osc i l la tor )  has a t t r ac ted  
much a t t en t ion  as a typical  non l inea r  system. U n d e r  pure ly  s inusoida l  
exci ta t ions  the system is k n o w n  to possess mul t ip le  s teady-s ta te  solut ions.  
On  the o ther  hand,  under  a zero mean  s t a t iona ry  r a n d o m  exci ta t ion  the 
response is also a zero mean  s t a t iona ry  r a n d o m  process.  In  the first case it 
is c o m m o n  to use the technique of averaging  or  h a r m o n i c  l inear iza t ion  

over  one pe r iod  of the solut ion.  In  the lat ter ,  r a n d o m  case the s ta t is t ical  
l inear iza t ion  in the sense of ensemble  averaging  is popula r .  W h e n  the input  
is a c o m b i n a t i o n  of  the two, it  is na tu ra l  to pursue  a c o m b i n a t i o n  of  the 
two types of l inear iza t ions  for get t ing a solut ion.  This  is the a p p r o a c h  
taken by  Caughey,  (~) Budgor,(2~ and Bulsara ,  L indenbe rg  and  Schuler.(3) In 
the present  p a p e r  the above  non l inea r  p r o b l e m  is s tudied by  the G a u s s i a n  
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closure technique. This technique, previously described by Iyengar and 
Dash, (4) presupposes that certain joint probability density functions are 
Gaussian, to arrive at a closed hierarchy of moment equations through 
ensemble averaging. It is shown that the solution contains a periodic mean 
part and a random part, which attains stationarity in the long run. 
However, such a solution is found to be stable only for som~ values of the 
excitation frequency. Digital simulations have also been undertaken to a 
limited extent to verify the theoretical predictions. 

2. NONLINEAR SYSTEM 

The anharmonic oscillator is governed by the equation 

+ 2qoo~ + co2z + flz 3 = Q2 2 sin 2t + f ( t )  (1) 

where f ( t )  is a Gaussian white noise process with autocorrelation 

( f ( t , )  f ( t2 )  ) = I6(t2 - tl) (2) 

and q is the viscous damping coefficient less than unity. Transformation of 
the response variable as 

x = z/a1, tr~ =//(4~/co 3) (3) 

leads to 
2 + 2~0o2 + co2x + f l t72x  3 = ( f / a l )  + (22Q/a1) sin 2t (4) 

Here, it may be noted that a2 is the steady-state variance of eq. (1) when 
fl--0. In this case the system is linear and hence the sinusoidal excitation 
contributes only to the mean response. However, in the nonlinear case this 
is no longer true. Also, when f =  0, the nonlinear oscillator exhibits mul- 
tiple steady-state solutions. It is interesting to study what happens to these 
if the excitation contains a random part also. 

3. GAUSSIAN CLOSURE 

The response process is expressed as 

x( t )  =m(t )  + y(t)  (5) 

where m is the mean part and y is the random process part. The Gaussian 
closure approximation assumes that the random processes y(t)  and f ( t )  are 
jointly normally distributed. Substitution of eq. (5) in eq. (4) gives 

[/h + 2tloorh + ~2m Jr fltr~(m 3 h- 3y2m)] 

+ [f~+2tlco29+oo2z+fla21(y3+3m2y)] = ( f / a l ) + ( 2 2 Q / a l ) s i n 2 t  (6) 
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Taking ensemble averages, the Gaussian assumption on y leads to 

/h + 2tlcorh + coZm + fla21(m3 -k- 3o'2m) = ()o2Q/~1) sin 2t (7) 

Here, a(t) is the unknown standard deviation of the process y(t). Now, 
multiplying eq. (6) by f ( t l )  and taking averages, one gets, for the cross 
correlation between y(t) and f(t~), the equation 

]~yS+ 2qcO/~yf + ooZRyf+ 3/~cr2(m 2 + a 2) Ryf= Rfj-(t, t 1 )/a, (8) 

Similarly one can derive an equation for the autocorrelation function 
Ryy(l, tl) also. These equations together are equivalent to the linear 
equation 

.9 + 2~lc@ + o92y q- 3fla~(m 2 + ~r 2) y = ffirl (9) 

which has m(t) and a(t) as time-varying coefficients. The solution of eq. (7) 
in the steady-state to the first approximation can be taken as 

m = R sin(2t - ~b) (10) 

In case y(t) attains stationarity, a 2 will be a slowly varying function in 
comparison with re(t) and will approach a constant value for large t. Thus, 
in the first approximation, a may be treated as a constant in eqs. (7) and 
(9). From harmonic balance, eq. (7) may be analyzed to get 

R 2 = 02(2/o)4/[(1 + 3ca 2 + 0.75eR 2 - 22/e92) 2 + (2r/2/~o) 2] (11) 

tan ~b = 2q(2/co)/[1 + 3ca 2 + 0.75eR 2 - 22/~o 2 ] (12) 

Q=Q/a~ (13) 

e = fla2/oo 2 (14) 

It remains to solve eq. (9) along with the above equations. Since m is not a 
constant, eq. (9) cannot be solved exactly. Approximations via the WKBJ 
approach or the Fokker-Planck equation are, however, possible. 

4. WKBJ APPROXIMATION 

When e is small, the solution of eq. (9) can be explicitly written as 

f2 y(t)=(1/rrl) f ( r ) [g ( t )  g(~) 1 / 2 e x p [ - t / e ) ( t - r ) ]  

x sinl-gl(t) - g l ( r ) ]  d~ (15) 
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Here 

g( t )  =/~[1 - 6 cos 2 ( 2 t -  ~b)] m 

#2 = o92[- 1 _ r/2 + 3~(a2 + 0.5R2)] 

5 = 1.5e2R2/# 2 

(16) 

(17) 

(18) 

g~(t) = f g( t )  dt (19) 

Since f ( t )  is a white noise, it follows from 
theory,  that  

s tandard r andom vibrat ion 

When the steady state is of pr imary interest, functions with ( t - r )  as the 
argument  will be the main contr ibut ing terms in the above integral. This 
essentially amounts  to expanding the integrand and retaining the first few 
dominant  terms. Thus it may  be shown that  

[g ( t )  g ( r ) ]  -1 = 221-a2 + 0.5a 2 cos 22(t - z) + " " ]  (21) 

cos 2 [ g l ( t )  - g l ( z ) ]  = cos 2 2 a 3 ( t -  z)[-Jo2(a4) + 2J~(a4) cos 2 2 ( t -  z)]  

+ 2J~2(a4) cos 42(t - z) + " ' 3  (22) 

a I = (1 --[- 362/16) (23) 

a2 = (0.56 + 1563/64) (24) 

a3 = (1 - 62/16) (25) 

a4 = 0.5# 6/2 (26) 

Here,  J n ( a 4 )  is the Bessel function of order  n and argument  a4. After some 
more  algebra it may  be found that, with 2 = 2/o9, fi = #/o9 

62 = (tl/Itz)((al/tl)  -t- [0.5a~2/(t/2 + 22)] -- [bl  kia3/(q2 + a322 -2)] 

- 0.562[(2 + a32)l[~/2 + (2 + Pa4) 2 ] + (2 - a3P)l[rl 2 + (2 - Pa4) 2 ] } 

- 0.5b3 { (22 + a3~) / [q  2 + (22 + #a4) 2 ] 

+ (22 - a3 fi)/[tl  2 + (22 --  ~a4) 2 ] }) (27) 

e t  

a2(t)  = [ I /g ( t )  a~] J o g  '(~) e x p [ -  2~/o9(t- ~)] 

x s i n 2 [ g l ( t ) -  g1(T)] d~ (20) 
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b, = (a~J~o + O.5J~a 2) 

b2 = (2a2J~ + 0.5a~J2o + 0.5a2J~2) 

b3 = (2a12~ + 0.5a2~ + 0.5a22~) 

(28) 

(29) 

(30) 

Equations (11), (12), and (27) have to be solved simultaneously to find R, 
~b, and 00. 

5. FOKKER-PLANCK EQUATION 

An alternate to the above approximation, particularly attractive when 
f ( t)  is white noise, is to write down the Fokker-Planck equation 
corresponding to eq. (9) and the joint density function p(y, ~; t). This is 
easily obtained as 

(~P " ~P ~ 2 ~ 2 p  
-~= --Y-~-fy+~f {P[2t103-O+032y+Bf100~(002+m2) Y]} + 0"5ICrl ~ 5  (31) 

From this the equations for the second-order moments of y and 3~, namely 

3,1 = ~ y 2 ( / ) )  ~---002 5" 2 = (~1)2 ( / ) ) ,  3' 3 = (y(t)  ~(t)) (32) 

are obtained as 

dsl/dt = 2s3 (33) 

ds2/dt= I/002- 21032 + 3fi002(m2 + 002) ] s3-4q03s 2 (34) 

ds3/dt = s2 - [03 2 + 3f100~(m 2 -+- 002)]  S1 _ 2t/03S 3 (35) 

When the steady state is of primary interest the time varying term mZ(t) 
can be averaged over a period of oscillation to get approximately 
rh2-  ~ 0.5R 2. Further in the steady state, the moment derivatives in eqs. 
(33-35) vanish leading to 

002 ~--. { F( l _.~ 1 .5GR2)2 _~_ 12~]  1/2 __ (1 + 1.5gR2)}/(6g) (36) 

Again, eqs. (11), (12), and (36) are to be solved simultaneously to arrive at 
numerical results on R, ~b, and 00. 

6. STABILITY ANALYSIS  

In the absence of the random excitationf(t),  the amplitude R can have 
three solutions of which one is unstable. Thus it is possible that in the 
present case also R and hence, in turn a, may exhibit three solutions. 
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However, these will be realizable only if they are stable also. This calls for 
the stability analysis of eq. (4), which is complicated due to the presence of 
the stochastic term. An approximate analysis is possible along the following 
lines. The sample solution of eq. (4) is in the form 

Xo(t)  = R sin(2t - ~b) + a sin(toe t - 0) (37) 

where a( t )  and O(t) are the slowly varying envelope and phase of the 
narrowband approximately ergodic Gaussian process y ( t ) .  The dominant 
frequency present in y ( t )  is the effective natural frequency of the nonlinear 
oscillator given by 

e~ e = coil + 3e(0.5R 2 + 0 2 ) ]  1/2 (38) 

The above solution will be stable, provided small departures from this 
eventually vanish. This amounts to ascertaining the almost sure asymptotic 
stability of the variational equation of eq. (4) which is 

i5 + 2tirol: + co2v + 3~0"2 xZv  = 0 (39) 

Now, introducing a nondimensional time ~ot--z and with the transfor- 
mation 

v = ue ~ (40) 

one gets 

u" + (Co - C1 cos 2(2e z -- ~b) - C2 cos 2(z - 0) 

q- C3 {c~ - -  ~e)  "[" - -  0 -~- ~ 3  - -  COS [-(1 -]- "~e) ~ - -  0 - -  ~ 3  } ) 1//7-- 0 

,~e=,~/O~e; C 0 = l - - q 2 q - l . 5 ~ ( a Z + R  2) 

C I = I . 5 e R  2; C2=1.5~a 2; C 3 = 3 e a R  (41) 

Here the primes denote derivatives with respect to r. This equation con- 
tains the slowly varying stochastic coefficients a and 0 and also the 
parametric frequencies 2, 22e, (2e--1),  and (2 e + 1). In the primary har- 
monic region the dominant parametric frequency is 2, and hence one can 
take the solution for the above equation as 

u = A cos z + B sin z (42) 

Since a and 0 are slowly varying in comparison with the frequency of u, 
following the quasistatic approach of Stratonovich, ~s) one can get averaged 
equations for A and B as 

A '  = - C l I A  - C12B; B'  = C : I A  + C22B (43) 
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The coefficients are 

Cll  = 0.25C1 sin 2~b + [cos  20(1 - cos 4rr /2e)/(8~o1)]  C2 - 0.5C311 

C12 = 0.5(2e 2 -- Co) --0.25C1 cos 2~b- 0.25C 2 cos 20 + C312 

C2~ = 0.5(2~ - Co) + 0.25C1 cos 2~b + 0 . 2 5 C  2 c o s  2 0  - -  C3[ 3 

C22 = 0.25C1 sin 2~b + [-cos 20(1 - cos 4~/2e)/(8~co1) ] C2 + 0.5C311 

co l = (1 + )re ~) (44) 

;? I~ = (2~z) -~ s in20[cos(O/2e-O-O+~)-cos(O/ . ; te+O-O-~b)]dO 

Z2 = (27c) -1 s in20[cos (O/2e-O-O+r  

f2 I 3 =  ( 2 ~ )  1 c o s  2 O[COS(I/J/~e--O--O-~-O)--COS(O/~e-J-O--O--O)] dO 

Equat ion  (43) can be satisfied by a solut ion of the type 

This gives 

(45) 

~(v) = 0.5(C22 - C11) _+ 0.5 [(C22 - CH) 2 - 4(C12C2~ - e l l  C22)] 1/2 (46) 

For  a lmost  sure asympto t ic  stability of the solut ion given by eq. (37) the 
condi t ion would be 

-r --, oo 

Since a and  0 are ergodic processes in the s teady-sta te  solution, ~ will also 
be ergodic, and  hence the above  t ime average  can be replaced by the 
ensemble average to get the condi t ion for stabili ty as 

r />  rea l (~(a ,  0 ) )  (48) 

The joint  density function of a and  0 is given by 

p(a, 0) = (2~) -1 (a/~r 2) exp( - 0.5a2/r a) (49) 
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Since it can be shown that ( ( C 2 2 -  e l l ) )  = 0 the stability condition further 
reduces to 

~>0.5 ffR (C22-Cll)2-4(C12C21-ClIC22)l/2• O) dadO (50) 

where the integration is done over the region in which the integrand is real. 

7.  N U M E R I C A L  E X A M P L E  

Numerical results have been obtained from the above theory for a 
system with 

~/= 0.08, e = 0.5, Q = 0.5 

The amplitude R of the mean solution and the corresponding variance a 2 
are shown in Figs. 1 and 2 as functions of 2/~o. 

In Fig. 1 the deterministic response amplitude in the absence of the 
random excitation (i.e., f =  0) is also shown. The WKBJ  solution and the 
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. . . . . . . . . .  Bulsara,  Lindenberg and Shuler 

�9 Simu[ation 

1.0 2.0 3-0 /,43 
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Fig. 1. Mean amplitude in steady-state for a system with e = 0.5, r/= 0.08, Q = 0.5. 
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Fig. 2. 
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F - P  equation solution for R are almost the same and are very similar to 
the deterministic case. The steady-state variance in the absence of non- 
linearity (i.e., e = 0 )  is unity. At the other extreme, in the absence of the 
random excitation, the variance is zero. The present steady-state value of 
variance must lie between zero and unity. Figure 2 shows the reduction of 
~z from unity as 2/co varies. Both the WKBJ and the F - P  equation 
approaches give comparably similar results for er 2. Simultaneously, the 
stability analysis has been carried out at every value of 2/e~ to ascertain the 
realizability of the steady-state results. The stable and unstable regions are 
marked in Figs. 1 and 2. Bulsara, Lindenberg, and Shuler ~3) have studied 
the present problem by a combination of harmonic and statistical 
averaging methods. It would be interesting to compare their results with 
the ones obtained here. In the notation of the present paper, the results of 
the above authors for R and cr 2 are 

R = 022 [4t12)12 + ( ~ - 2  _ 2=)2] - , /=  (51) 
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o--2 = 1 + 3eEa 2 + (Q2;c4/D) + 0.1250428/(o -2 02) ]  

X 1-1 -t- 0.502,~4/(0"2 0 ) ]  1 

D = [4rf122 + (a -2 - -22)  2-] (52) 

These two equations have also been solved simultaneously and the results 
are shown in Figs. 1 and 2. It is seen that the present solution and the 
solution of Bulsara, Lindenberg, and Shuler ~3) in general compare well. 

8. N U M E R I C A L  S I M U L A T I O N  

In the absence of exact solutions, the above approximate theoretical 
predictions can be verified further through a numerical simulation of the 
basic eq. (4). This has been done by solving eq. (4) by the Runge-Kutta  
scheme for 100 samples of the white noise input. It would be convenient to 
measure time, in the numerical integration scheme in terms of cycles of 
oscillations v = ~ot/2~. This transforms eq. (4) to 

x" + 4t/~x' + 4~2x + 4g2gx 3 

= 4~2(co2al) 1 f(2~r/~o) + 4rc222 0 sin(2~z2r) (53) 

where the primes denote derivatives with respect to r. The first term on the 
right side of this equation is the white noise process measured in the new 
time r. The strength of this process is 

I '  = 16~4(co2cq) 2 (Ico/2~) = 32t/~ 3 (54) 

In the numerical solution, this white noise process is simulated as a 
sequence of independent Gaussian random variables with zero mean and 
variance I'. The mean and variance are found by ensemble-averaging at 
every time instant across the 100 samples. The length of integration is to be 
based on the time required for the solutions to reach a steady-state. In the 
present context the steady-state is to be viewed as a stable periodic solution 
for the mean m(t) and also a constant variance value for the process y(t). 
For a linear system under white noise excitation, the approach to the 
steady-state depends on how fast e - 4 ~  approaches zero. For  t /=  0.08 this 
is achieved in less than 10 cycles. Thus, after allowing for the nonlinearity, 
the length of integration is taken as 50 cycles. The amplitude of the last 
cycle of the mean response is taken as an estimate of R and shown in 
Fig. 1. Similarly the average of the sample variance in the last cycle is taken 
as an estimate of the steady variance and plotted in Fig. 2. The con- 
vergence of the simulated mean and variance with respect to the sample 
size has been checked. It is found that for values of 2 where the theoretical 
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results are stable, 50 samples produce statistically acceptable results. In 
Figs. 3 and 4, typical simulated results of m(~) and ~2(v) with 50 samples 
are shown for 2/~ = 1 and 3, respectively. However, in Figs. t and 2 the 
simulated steady values are for 100 samples. In the stable regions of these 
figures the theoretical results compare favorably well with the simulated 
statistics. In the unstable region the sample variance plotted in Fig. 2 is 
largely different from the theoretical steady-state values. It must be noted 
that while in the unstable regions of Fig. 2, y(t) does not tend to be a 
stationary process, the Gaussian closure method will still be able to yield 
good approximations. To demonstrate this, the moment eqs. (33-35) and 
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Fig. 3. (a) Nonstat ionary mean; 2/~o = 1, (b)  nonstationary standard deviation; 2/~o = 1. 
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eq. (7) have been simultaneously solved numerically for 2/0)= 1, 2, and 3 
to obtain the time-dependent mean and variance without assuming a 
possible steady-state. These results are shown in Figs. 3, 4, and 5, along 
with the corresponding simulations on the exact equation. Again the 
present theory compares favorably with the numerical simulation. 

9. D ISCUSSION A N D  CONCLUSION 

It is interesting to observe that introduction of a small random noise 
into a sinusoidal excitation can alter the response of a Duffing's oscillator 
considerably. The variance is here represented as a fraction of the steady- 
state variance of the linear case. It is known that for the hardening type of 
nonlinearity (5 > 0) the variance under white noise input (,I. = 0) decreases 
fro the linear case. In the case of the combined excitation as in the present 
study, the mean and the second moments interact to reduce the variance 
further as 2, the frequency of the excitation increases. It would seem that as 
2/co e approaches unity, the sinusoidal term drives the system lessening the 
randomness and thus increasing the mean but decreasing the response 
variance. On the other hand, away from resonance the white noise has con- 
siderable influence over the response and hence the variance increases with 
decreasing mean. However, the left branch of the solutions in Figs. 1 and 2 
become unstable with increase in 2/0) and hence the steady-state itself may 
break down. For the example considered here, this happens at a value of 
about 2/c0 = 1.2. Beyond about 2/co = 1.85 three solutions become possible, 
but all of them are unstable. From about 2/co -- 2.1 the smallest of the mean 
and correspondingly the largest variance becomes stable. The numerical 
simulations were carried out with the initial amplitude being near the 
stable deterministic value. Thus, for 2 /e)= 2, 2.5, 3, and 3.5 the simulation 
was repeated with two different initial conditions. For  2/co = 2, in both the 
cases instability was noticed. At 2/0)= 2.5 and 3 the two different starting 
conditions lead to different mean values as shown, but to essentially the 
same variance value, at the end of 50 cycles. 

The major result of this study is that the cubic oscillator of eq. (4) 
driven by both a noise and a harmonic term can have a steady-state 
solution that has a periodic mean and a nearly constant variance. 
However, the variance will cease to be constant for particular values of the 
external harmonic frequency. In conclusion, it may be noted here that the 
Gaussian closure technique provides a useful approach to study either the 
transient or stationary responses of nonlinear stochastic systems. 
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